Métodos de Física Matemática 1 (FSC 5425): Lista #1 - Estruturas Algébricas

Prof. Tiago Nunes

Problema 1

Dizemos que um polinômio $f(x_1, x_2, ..., x_n)$ é simétrico se qualquer permutação de suas variáveis resulta em uma simetria de $f(x_1, x_2, ..., x_n)$.

- (a) Dê um exemplo de polinômio simétrico com n=3;
- (b) Dê um exemplo de polinômio não-simétrico com n=4;
- (c) Seja $f(x_1, x_2, ..., x_n)$ um polinômio simétrico. Qual o número de simetrias de $f(x_1, x_2, ..., x_n)$?

Problema 2

Seja \mathbb{Z} o conjunto dos números inteiros e · represente a operação de multiplicação. Mostre que (\mathbb{Z}, \cdot) não é um grupo (isto é, mostre que os números inteiros não são um grupo sob a operação de multiplicação).

Problema 3

Mostre que (\mathbb{Q}^*, \cdot) é um grupo (isto é, mostre que o conjunto dos números racionais excluídos do zero é um grupo sob a operação de multiplicação).

Problema 4

Definimos o conjunto dos inteiros módulo n \mathbb{Z}_n como o conjunto dos possíveis restos da divisão por n

$$\mathbb{Z}_n = \{0, 1, 2, ..., n-1\},\$$

a partir da operação % módulo:

$$a\,\%\,n=$$
resto da divisão a/n.

Definimos a operação $+_n$ ("soma módulo n") como

$$a +_n b = (a + b) \% n.$$

- (a) Mostre que $(\mathbb{Z}_4, +_4)$ é um grupo (isto é, os inteiros módulo 4 são um grupo sob a operação de soma módulo 4);
- (b) Obtenha a tabela de adições para o grupo acima;
- (c) Verifique que ela é equivalente à tabela de composições das operações de simetria do bumpy square.

Problema 5

Seja G_n o conjunto das n-ésimas raízes complexas da unidade, isto é, das soluções da equação

$$z^n = 1, z \in \mathbb{C}$$
.

- (a) Mostre que (G_3, \cdot) é um grupo;
- (b) Mostre que (G_4, \cdot) é um grupo e que sua tabela de multiplicações é equivalente à tabela de adições do grupo $(\mathbb{Z}_4, +_4)$.

Problema 6

Verifique que a estrutura $(\mathbb{Z}_n, +_n, \cdot_n)$, com \mathbb{Z}_n representando o conjunto dos inteiros módulo n, e as operações $+_n$ e \cdot_n definidas por:

$$a +_n b = (a+b)\%n$$
$$a \cdot b = (a \cdot b)\%n$$

constitui um anel. Ele é comutativo?

Problema 7

Mostre que a estrutura $(\mathbb{N},+,\cdot)$, em que + e \cdot representam a soma e a multiplicação usual de números naturais, não é um anel.