Métodos de Física Matemática 1 (FSC 5425): Lista #2 - Espaços Vetoriais

Prof. Tiago Nunes

Problema 1

Verifique que o conjunto \mathbb{C}^n com as operações usuais de soma e multiplicação de números complexos constitui um espaço vetorial sobre o corpo dos números complexos.

Problema 2

Considere o conjunto \mathbb{R}^2 e as seguintes operações:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

 $(a,b) + (c,d) \to (a+c,b+d)$

$$\odot: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$\alpha \odot (a, b) \to (\alpha^2 a, \alpha^2 b).$$

A estrutura $(\mathbb{R}^2, +, \odot, \mathbb{R})$ constitui um espaço vetorial? Justifique.

Problema 3

Seja V um espaço vetorial sobre um corpo \mathbb{K} . Sejam $v \in V$ e $k \in \mathbb{K}$. Mostre que se $\alpha v = 0$, então $\alpha = 0$ ou v = 0.

Problema 4

Mostre que os monômios $\{1, x, x^2, ... x^n\}$ constituem uma base para o espaço vetorial definido pelo conjunto dos $\mathbb{R}[x]$ dos polinômios reais de grau n.

Problema 5

Sejam $u = (u_1, u_2)$ e $v = (v_1, v_2)$ vetores em \mathbb{R}^2 . Mostre que

$$\langle u, v \rangle = \frac{1}{9}u_1v_1 + \frac{1}{16}u_2v_2$$

define um produto interno em \mathbb{R}^2 .

Problema 6

Suponha que u, v, w são vetores tais que $\langle u, v \rangle = 3$, $\langle u, w \rangle = -4$, $\langle v, w \rangle = 7$, ||u|| = 1, ||v|| = 2 e ||w|| = 1. Calcule:

- a) $\langle u+v,v+w\rangle$
- b) $\langle 4v + w, 2u v \rangle$
- c) ||u + v + w||

Problema 7

Suponha os espaços vetoriais \mathbb{R}^3 e \mathbb{R}^4 com o produto interno usual e sejam u,v vetores e θ o ângulo entre eles. Encontre $\cos\theta$ para:

- a) u = (5, 2, -1) e v = (4, -9, 2)
- b) u = (1, 1, 1, 1) e v = (0, 1, 0, 1)
- c) u = (2, 0, 0, -2) e v + (4, 0, 0, 0).