Métodos de Física Matemática 1 (FSC 5425): Lista #5

Prof. Tiago Nunes

Problema 1

Seja \vec{A} um campo vetorial qualquer e seja $\vec{r} = x^i \hat{e}_i$ o vetor posição no \mathbb{R}^3 . Utilize as propriedades do tensor de Levi-Civita para mostrar que :

- $\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) \nabla^2 \vec{A}$
- $\nabla \cdot (\vec{A} \times \vec{r}) = (\nabla \times \vec{A}) \cdot \vec{r}$
- $\nabla \times (\vec{A} \times \vec{r}) = 2\vec{A} + (\vec{r} \cdot \nabla)\vec{A} \vec{r}(\nabla \cdot \vec{A})$

Problema 2

Em mecânica clássica, o momento angular orbital é dado por $\vec{L} = \vec{r} \times \vec{p}$. Em mecânica quântica, \vec{p} é substituído pelo operador $i\nabla$ (com $\hbar = 1$).

- a) Utilizando as propriedades do tensor de Levi-Civita, mostre que as componentes cartesianas do operador momento angular quântico são dadas por $L_i = -i\epsilon_l^n{}_i x^l \partial_n$.
- b) Mostre que as componentes acima satisfazem a relação de comutação

$$[L_x, L_y] \equiv L_x L_y - L_y Lx = iL_z$$

e que, portanto, $\vec{L} \times \vec{L} = i\vec{L}$.

Problema 3

Considere o fluxo de um rio e assuma que a velocidade da água é dada por

$$\vec{v} = v_0 \left(1 - \frac{4x^2}{w^2} \right) \hat{e}_z,$$

em que x é a distância até o ponto central do rio e w é a largura do rio. Encontre o fluxo da velocidade, assumindo que a seção transversa do rio é um retângulo de profundidade h.

Problema 4

A figura 1 ilustra o fluxo do campo elétrico de uma carga pontual localizada à uma distância d do centro de um círculo de raio a.

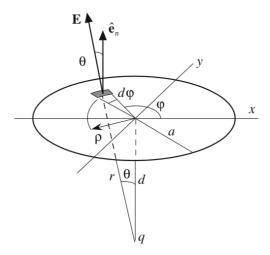


Figura 1: (Exercício 4: fluxo do campo elétrico de uma carga pontual localizada à uma distância d do centro de um círculo de raio a.

- a) Calcule o elemento de fluxo $\vec{E} \cdot d\vec{a}$.
- b) Calcule o fluxo total do campo sobre o círculo.

Problema 5

O potencial eletrostático de uma distribuição de cargas em coordendas cartesianas é dada por:

$$\phi(x,y,z) = \frac{V_0}{a^3} xyz e^{-(x+y+z)/a},$$

em que V_0 e a são constantes.

- a) Encontre o campo elétrico $\vec{E} = -\nabla \phi$ desse potencial.
- b) Calcule a densidade de cargas da fonte desse campo.
- c) Qual é a carga total em um cubo de lado a que possui um vértice localizado na origem e lados paralelos aos eixos? Expresse sua resposta em múltiplos de $\epsilon_0 V_0 a$.

Problema 6

Considere o campo vetorial dado por

$$\vec{A} = \frac{ky}{x^2 + y^2} \hat{e}_x - \frac{kx}{x^2 + y^2} \hat{e}_y,$$

em que k é uma constante.

- a) Calcule $\vec{\nabla} \times \vec{A}$.
- b) Calcule a integral de linha de \vec{A} sobre uma circunferência de raio a centrada na origem.
- c) A relação entre os resultados dos itens a e b é a que você esperava? Comente?

Problema 7

Considere o campo vetorial

$$\vec{A} = (2xy + 3z^2)\hat{e}_x + (x^2 + 4yz)\hat{e}_y + (2y^2 + 6xz)\hat{e}_z.$$

- a) Mostre que o campo \vec{A} é conservativo.
- b) Determine o potencial associado ϕ .

Problema 8

Considere o campo vetorial definido por

$$\vec{A} = kr^{\alpha}\hat{e}_r$$

em que k e α são constantes.

- a) Calcule o fluxo total desse campo sobre uma esfera de raio R centrada na origem.
- b) Calcule $\nabla \cdot \vec{A}$ e verifique a validade do teorema da divergência.

Problema 9

Mostre que um campo vetorial que pode ser escrito como

$$\vec{F} = f(r)\vec{r}$$
,

em que r é o vetor posição, é conservativo.

Problema 10

Considere o sistema de coordenadas esféricas $\{r, \theta, \phi\}$ definido por

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$.

- a) Quais são as curvas coordenadas desse sistema?
- b) Encontre o elemento de linha desse sistema e o utilize para determinar as componentes métricas desse sistema.
- c) Defina a base ortonormal $\{\hat{e}_r, \hat{e}_{\theta}, \hat{e}_{\phi}\}$.
- d) Calcule o vetor \hat{e}_{θ} em termos de $\{\hat{e}_x, \hat{e}_y, \hat{e}_z\}$.
- e) Calcule o gradiente da função $f = r \sin \theta$.
- f) Calcule o rotacional de $\vec{A} = r\partial_{\phi}$.
- g) Calcule o divergente de $\vec{B} = r \cos \phi \partial_r$.

Problema 11

Exercícios adicionais do livro referência Arfken-Weber-Harris, 7a Edição:, 3.5.6, 3.5.8, 3.7.3, 3.9.1, 3.9.3