In heavy-ion collisions, momentum-dependent pair correlations can be characterized by a principal component analysis (PCA), in which subleading modes are expected to reveal new information on flow fluctuations. However, we find that, as currently measured, these modes can be dominated by multiplicity fluctuations, which serve as an unwanted background. Here, we propose new PCA observables that are robust against multiplicity fluctuations and isolate novel sources of flow fluctuations, thus being suited to provide fresh insight into the initial stages of the system at small length scales.
Artigo completo: Phys. Rev. C 101, 034903 (2020) – Measuring momentum-dependent flow fluctuations in heavy-ion collisions
In this work, we present a bag-type model within a nonextensive statistics applied to the description of the properties of a hadronic system with an underlying fractal structure. The nonextensive ideal gas inside the bag is determined by the grand canonical partition function from which pressure, energy, and particle density, as well as temperature and chemical potential are obtained for the hadronic system. These quantities are studied in the approximation of fixed mass for all bag constituents but also for discrete and continuum masses. In all cases, the freeze-out line, corresponding to the energy per particle equal to 1 GeV, and the lines corresponding to a fractal structure inside the proton volume are obtained. Finally, the pressure on the bag surface of the proton is calculated and the resulting value (0.135 GeV)4 is obtained.
Artigo Completo: Phys. Rev. D 101, 054022 (2020) – Bag-type model with fractal structure
A Matéria Mais Quente do Universo
Os prótons e nêutrons que compõem a matéria são formados por partículas ainda menores, chamadas quarks, que, em condições usuais, encontram-se confinados em seu interior for força fortíssima. No entanto, em condições extremas, os quarks libertam-se desse confinamento e passam a formar, juntamente à um outro tipo de partícula elementar conhecido com glúon, uma fase da matéria conhecida como sopa de quarks e glúons. Especula-se que esse seja o estado da matéria em ambientes extremos, como universo primordial, milionésimos de segundo imediatamente após o big bang, e no interior de objetos muito densos, como estrelas de nêutrons. Ela é, também, formada em experimentos de colisores de partículas, como o LHC. Nesse seminário, aprenderemos sobre a natureza dessa sopa primordial e veremos como estudos de astrofísica e física nuclear e de partículas elementares podem ser aplicados para entender melhor suas propriedades.
Prof. Tiago Nunes
1 de Abril de 2020, às 18:30
Auditório Faruk Nome, Departamento de Química
Fonte: Departamento de Física